Mesa User's Handbook

Version 4.0
June 1978

This handbook contains documentation for using all of the standard Mesa services intended
for Mcsa programmers as well as operational procedures for the Alto. In general, the
sections arc short and to the point, serving as a how-to guide rather than a reference
document containing all of the details. This handbook assumes prior familiarity with the
Mesa language as well as the Alto.

XEROX

SYSTEMS DEVELOPMENT DEPARTMENT
3408 Hillview Avenue / Palo Alto / California 94304

This document is for intemal Xerox use only.

Preface

1. Getting
1.1.
1.2.
1.3.
14.
1.5.
1.6.
1.7.

1.8.

Table of Contents

started
Sctting up the disk
Installing the debugger
Preparing the source file
Compiling your program
Binding your configuration
Running your program
Dcbugging your program

Reporting problems

2. Dircctorics

3. Resources

Appendices
A.
B.
C.

Compiler
Binder
System

D. Dcbugger

;1','

Utilities

o B W W W W NN

15
20
22
27

Preface
June 1978

This handbook contains documentation for using all of the standard Mesa services intended for
Mesa programmers as well as operational procedures for the Alto. In gencral, the sections are
short and to the point, scrving as a how-to guide rather than a reference document containing all
of the details. This handbook assumes prior familiarity with the Mesa language as well as the
Alto. All suggestions as to the form, correctness, and understandability of this document should
bec sent to your support group.

This documentation is divided into 4 parts. Section 1 tells you the basics nceded to get started,
section 2 lists the directories that are of interest to Mesa users, section 3 lists various rcsources
you should be awarc of, and appendices A through E give further details on the compiler, binder,
system, dcbugger, and utilities,

The style of this handbook is similar to that used in the Mesa Language Manual. All fine
points arc in this font, any word or phrasc which needs to be stressed is italicized, user
input/dcbugger output is in this font, file names are IN THIS FONT, and refercnces to other
documents are in this font.

Section 1: Getting Started

This scction tells you all that you need to know for getting started and running a Mecsa program.
Sec the appendices for further details on the various subsystems and a sample debugging session,

1.1. Sectting up your Alto disk

If you are sctting up an Alto disk from scratch, cither copy the standard Mesa disk maintained
by your support group or obtain the command file NEWMESADISK.CM, which transfers the basic
runtime files, as well as Bravo (and a Mcsa USER.CM file), to your Alto disk. You also nced to install
the Alto Operating System Version 15/5, Exccutive 8, using crase option, before exccuting the command file; this
should leave your disk with about 4000 free pages. If you just wish to get a ncw Mesa system on an
already initialized disk, obtain the command file MESA.CM.

In cither case, the basic Mesa runtime files that arc transferred are: (1) RUNMESA.RUN, a BCPL
program which loads the ram with the Mesa emulator, loads main memory with the kernel Mesa
system, and starts exccution, (2) MESA.MAGE, the Mesa system, (3) COMPILER.IMAGE, the compiler,
and (4) BINDERIMAGE, the binder (5) XDEBUG.MAGE, the dcbugger, (6) WINDEX.BCD, the window
manager for (optional) use with the debugger, and (7) the system definitions files. Note that you
neced approximately 1400 pages for all of the Mesa files plus about 850 pages for Bravo and related files. These
command files also install the debugger (and Bravo). ’

If the file MESAFONT.AL exists, Mecsa will use it for the system display; otherwise SYSFONTAL is
used. .

1.2. Installing the debugger

In order to cstablish the communication link between the debugger and the Mesa Executive, you
must install the debugger. ‘This installation is similar to installing the Swat debugger, for those familiar with
that operation. Make sure your Alto disk contains the dcbugger, XDEBUG.IMAGE, and the window
manager for (optional) use with the debugger, WINDEX.BCD.

The Install command may be invoked from the Alto Exccutive by typing XDebug Windex/LI,
which loads the window manager (with code links) and installs the debugger. Alternatively, you may
type XDebug to thc Alto Exccutive, which tecaves you talking to the debugger nub whosc prompt
character is "/". If you would like to include the window manager in the dcbugger, cxecute a
New - Start scquence on the file WINDEX.BCD. If you want to load some of your own programs into the
debugger, scc the Mesa Debugger Documentation for more complete details on how this is done. When you are
satisficd with the status of your dcbugger, issuc the Install command; this saves the current
corc imagc of the dcbugger and cxits to the Alto Exccutive,

Getting started 3

1.3. Preparing your source file

Mesa accepts both unformatted Ascl and- formatted Bravo source text Files. Since the debugger
uscs source files to print source-text descriptions of the locus of the pc in frames and for sctting
breakpoints, be surc that the source files on your Alto disk are consistent with the object files,

'1.4. Compiling your program

Type Compiler to the Alto Executive to invoke the compiler. It prompts for the source file
name; when it finishes, it prompts again; a null filename (CR) rcturns you to the Alto Exccutive.
Alternatcly, you may type Compiler sourcel source2 . .. dircctly to the Alto Exccutive,
making use of its filename completer if you wish. The compiler assumes a ".mesa"” filename
extension if it is not supplicd. Compiled versions of all pEFINITIONS modules that your program
uscs must be on your disk.

If a syntactic crror occurs, the compiler attempts to recover by deleting and/or inscrting text (not
in the file), displays the change(s), and trics to plow on. Semantic errors result in a symbolic
print-out of the location of the error (in the form: procedure[character-position]) and an
indication of the type of crror. The semantic passes try very hard to muddle through with a
complete diagnosis. The compiler puts all error messages in the file sourcename.errlog.
When compiled successfully, the resulting object file is found on sourcename.bcd.

1.5. Binding your configuration

Typing Binder to the Alto Exccutive invokes the binder. It prompts for the source file name;
when it finishes, it prompts again; a null filename (CR) returns you to the Alto Exccutive.
Alternately, you may type Binder sourcel source2. .. directly to the Alto Exccutive, making
use of its filename completer if you wish. The binder assumes a ".config"” filename cxtension
if it is not supplied.

Compiled versions of all modules in your configuration must be on your disk. The binder goes
through your configuration description, sourcename.config, and attempts to bind the
IMPORTS/EXPORTS. All crror messages are put in the MESA.TYPESCRIPT file. When successfully
bound, your sourcename.bcd file is rcady to run.

1.6. Running your program

Type Mesa to the Alto Exccutive and you will find yourself talking to the Mcsa Exccutive. At
system start-up the Mesa Exccutive is given control in a context from which all the various
system utilities arc visible. At this point, you arc wcll advised to browsc through the Mesa
System Documentation for complete details on what you can do. Basically, you must: (1) load
your program -- New command, and (2) cxccute its initialization code and start cxccution --
Start command. If this fails, try putting in some breakpoints or cnabling some tracing before
cxccuting step (2). :

Getting started 4

1.7. Dcbugging your program

In order to sct some breakpoints in your program, trace program exccution, display the runtime
state, or interpret simple Mecsa statements, you must first invoke the Mesa debugger. There are
scveral ways of doing this. The straightforward mcthod is to issue the Debug command to the
Mesa Exccutive; this brings you into the debugger, ready to exccute a command. If you wish to
cnter the dcbugger at any time (i.e.,, while your program is running), +SWAT intcrrupts your
program. Once you arc inside the debugger, typing "?" to the command processor gives you a list
of the valid commands. The Mesa Debugger Documentation contains details on other ways of
cntering thc debugger and complete documentation on all the available commands.

1.8. Reporting problems

Any rcquests or problems with the Mesa system should be sent to <SDSUPPORT>. Bug reports and
messages that cannot be answered immediately are assigned a number and a state (open, closed,
rejected, or superseded) and filed in <SDSUPPORT>CR.LOG. Whencever a change request is moved
from one state to another, the originator is notificd. Information about any rcquest can always
be found in the log.

Section 2: Directories

These dircctories are maintained on [IRIS]. Users without access to [IRIS] should consult their
support group to find another host.

{ALPHAMESA>

Contains the new version of the Mesa system during the alpha test period. When the
system is recady to be relcased, the contents of the <MESA> dircctory moves (temporarily)
to <OLDMESA> and the contents of <ALPHAMESA> moves to <MESA>.

{MESA>

Contains the MAGE files of interest to users of the Mcsa system. It contains MESA.IMAGE
(the Alto/Mesa system), COMPILER.IMAGE (compiler), BINDER.IMAGE (binder), XDEBUG.IMAGE
(dcbugger), WINDEXBCD (window manager for optional use with the debugger), and
RUNMESARUN (Alto/Bcpl program which "boots" the Mesa system on the Alto).

(MESA> SYSTEM>

Contains the source and objcct files for the system definitions and program modules.
Several packages constructed from standard Mesa system modules arc also stored here.

{MESA> COMPILER>
{MESA> BINDER>
{MESA> XDEBUG>
{MESA>LISTER>
{MESA>UTILITIES>

Contains the source and object files for the the compiler, binder, and debugger, lister, and
utility programs respectively.,

{MESA>DOC>

Contains the documentation for the Mesa system. Both .BRAVO and .PRESS versions are
maintained here.

<MESALIB>
An informal directory containing packages and independent subsystems along with
corresponding documentaion. The file SUMMARY.PRESS contains a list of these packages
and a short description of . cach.

[MAXC] < SDSUPPORT>

Contains CR.LOG, the log of change requests for the Mesa system (as cxplained in Section
1.8). Any problems with the Mcsa system should be reported to <SDSUPPORT>.

Section 3: Resources

The following list cnumerates rcsources that may be of interest to Mesa programmers.

Documents

Mesa Language Manual
Complete reference on the language, syntax, and use.

Elements of Mesa Style
Describes some of the novel features of Mesa using a number of examples oriented
towards the systems programmer. It concentrates on compile-time checking, interfaces,
and modularity.

Early Experience with Mesa
Discusses issues involved in using Mesa for systems programming (written by the
designers of Mesa). It is reccommended for those interested in the philosophy behind the
language (not for the beginner).

Mesa System Documentation

Describes configurations of the Mesa system software and components which comprise
them.

OIS Mesa Functional Specification

Describes the implementation of the runtime support necessary to exccute Mesa programs.
It assumes a Dstar machine, rather than an Alto, and is quite dctailed.

OIS Processor Principles of Operation
Describes the interior architecture of the OIS System Element Digital Processor. It
includes a description of the virtual storage system, the instruction set, and the input-
output facilities.

Mesa Debugger Documentation
Describes the current relcase of the Mesa debugger,

Debugger - [Extended Features

Describes some extended features of the Mesa debugger: FTP command, user invoked
procedurcs, and the window manager (WINDEX).

Resources ’ 7

Files

{MESA>MESA.signals
<{MESA> BASICMESA.signals
<{MESA> BINDER.signals
{MESA> COMPILER.signals
{MESA> XDEBUG.signals

Lists the uncaught signal names (and global frame addresses) for various Mesa
components.

{MESA>USER.CM

A USER.cM file set up with the Mecsa Bravo macros, GACHA10 for the editing font, and
minimal printing fonts.

{MESA> NEWMESADISK.CM
{MESA>MESA.CM

The command files used for setting up a basic Mesa disk (as described in section 1.1).
[MAXC1] <SECRETARY>MESAUSERS.dI
Distribution list for messages to the Mesa user community. If you wish to get on this list,
talk to your secretary.
Other materials
There have been a series of videotapes prepared which describe various features of the language

and runtime cnvironment. Sce a member of your support group for further dctails on the tapes
that are currently available and where to get them.

Appendix A: Compiler

The Mesa compiler translates Mcsa source files into corresponding object files. An object file
contains the exccutable codce for the module (if any) plus a binary configuration description (for
use by the binder or loader) and a symbol table (for inclusion by other programs or for use by
the debugger). By convention, an object file has a name with extension ".BCD",

The Mesa Language Manual describes the syntax and semantics of the Mecsa source language.
This appendix describes the operation of the compiler, including the compile- time options and
nmessages.

Preparing Source Files

The compiler accepts ASCII text files. In a source file, any scquence of characters that begins

-with a tZ is skipped up to (but excluding) the next carriage rcturn (or end of file). This
convention accomodates Bravo formatting codes. You may use such formatting in your source
files as you sce fit. Note, however, that Mesa does nor interpret any information about fonts,
position, etc., attached to source text that it displays (in, c.g., identifying the location of an error
or breakpoint).

The recommended extension for naming any Mesa source file is ".Mesa".

Standard Bravo macros uscful during the cditing and compilation cycle are described later.

Running the Compiler
The compiler takes commands cither from the command line or intcractively from the keyboard.

To enter interactive mode, type just "compiler” to the Alto Exccutive. The compiler
will prompt you for commands. You can correct a command during typcin by using the
usual set of cditing characters. To exit from the compiler, respond to the prompt with
just a carriage recturn.

To invoke the compiler specifying command line input, follow "compiler” with a list of
commands, separated by spaces. In this mode, you can usc the Exccutive’s file completion
facilitics to build the command list, and a// input is taken from thc command line.

The simplest form of command is just the name of a source file to be compiled. If you supply
the command sourcefile with no pecriod and no cxtension, the compiler assumes you mean
sourcefile.Mesa. '

During compilation, the display is turned off and a dic is displayed in the cursor. The number
on the dic identifics the pass of the compiler that is running. This allows you to check the
progress of the compilation and also provides uscful feedback to the maintainers of the compiler
when something gocs drastically wrong.

Compiler 9

Fine point:

Don’t confusc the compiler’s display with DMT’s.

The compiler reports the result of cach command with a mcssage having one of the following
forms (cach * is replaced by an appropriate number; bracketed items appear only when relevant):

file.mesa -- source chars: *, time: *
[code bytes: *, links: *, frame size: *]
[* warnings on file.errlog]

Compilation was successful. The object file is file.BCD. For a DEFINITIONS module, the
middle line is not meaningful and is omitted. Otherwise, "1inks" is the number of items
imported by the module, and "frame size" is the size of the global frame (in words),
cxclusive of the links. The third line appears only if warning messages were logged. The
compiler issues warnings for certain constructs that arc technically correct but nonsensical
or likcly to be unintended. Warnings do not prevent writing a valid object file, but you
should usually investigate them.

file.mesa -- aborted, * errors [and * warnings] on file.errlog

Compilation was unsuccessful. You will find the crror messages (and warning messages,
if any) in the indicated file. If the crrors were detected during the early phascs of
compilation, no object file was written (and any cxisting object file with the same name
remains valid). Otherwise, the object file was invalidated and will be rejected by the
binder and loader.

File error
The compiler could not find the specified file.

If you are providing commands intcractively, these messages appear on the Alto screen after each
command is completed.- Otherwise, they are written into the file MESA.TYPESCRIPT. In the latter
casc, the compiler will process the entirc command line; then, if any error or warning messages
were issued, it brings this to your attention with a message of the following form:

Errors [and Warnings] logged; type any character to finish,.

The compiler will not return to the executive or run another subsystem until you acknowledge
the message. (You can change this behavior by using switches, which are described next.)

Compiler Switches

Switches allow you to modify command input. A command has the general form
file[/s] '

where [] indicates an optional part and s is a scquence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a ’-° or °~’ to rcverse the
scnse of that switch. The valid switches are

compile code for an Alto (dcfault)

pause after compiling file il there arc crrors

terminate compilation and run the program contained in file
sort global variables and cntry indices (dcfault)

w 3T

Compiler 10

w log warning mecssages (default)
X prepare a cross-reference file
Each switch has a dcfault sctting, The command sourcefile is cquivalent to

sourcefile/a~psw~x if you usec the standard defaults, i.c., the compiler gencrates code for an
Alto (not a Dstar), does not pause after compiling file, sorts variables, logs warning mecssages,
and docs not produce a cross-reference file. Note that the "r” switch changes the interpretation
of file, which should name a subsystem when used with this switch,

You can also change the dcfault setting of any switch by using the "¢ switch. The text preceding
a"/c" is interpreted as a switch specification (designating a single switch only) and it establishes
the dcfault sctting for that switch. Unless overridden or reset, that default applies to all
subsequent commands.

Here is somc more information about the options:
a[ito]

Gencrate code for Alto (a) or DStar (-a) hardware. This switch primarily affects the
treatment of long pointers in the object code.

s[ort]

Normally, the compiler sorts certain items by frequency of use before assigning addresses.
This helps to keep the object code compact, If sorting is suppressed (-s), the assignments
of global framec offscts and entry indices depend only upon order of declaration in the
source text. (This switch was added in anticipation of tools allowing incxpcensive
correction and replacement of modules in a configuration. These tools are not yet
available.) .

wl[arnings]

Log (w) or ignore (-w) certain legal but suspicious usage that can be detected by the
compiler.

x[ref]

Generate (x) a file sourcename.XRJ containing cross- reference information for the file
being compiled (sourcename .Mesa). The file requires post- processing by separate utility
programs before it is useful.

Examples:

foo .
Compile foo using all the default switch scttings (standard or cstablished by preceding
"/¢" switches).
foo/-wx
As above, but suppress warning messages and generate foo.XRJ.
The p[ause] switch requires special comment. - You can use it to control progress through a

scquence of files specificd on the command line, As a global switch (set using "/c"), it specifics
pausing (p) or not pausing (-p) just before cxiting from the compiler. The global default is to

Compiler 11

pause. As a local switch, it specifics pausing just after compiling the specified file if that file or
any preceding contained crrors; morcover, any rcmaining commands are ignored. The local
default is not to pause but to continuc with the next command.

Examples:

compile -p/c file1 file2 file3

Use this form if you want the compiler to press on no matter what. If it is part of a
command file, the next (Iixecutive) command will be exccuted whether or not there were
CrTors.

compile file1 file2/p file3

Usec this form if you want the compiler to pausce before compiling file3 if cither filel
or file2 does not compile successfully. If file3 depends upon the others (by including
them), this can save a lot of wasted time and cffort.

Context Switching and Bravo Macros

If you are a Bravo uscr, you might find the following macros useful for switching between Bravo
and the Mesa compiler. They arc included in <MESA>USER.CM.

bravo/m filename

This invokes Bravo with two windows, gets filename.mesa in the top window and gets
filename.errlog in a smaller, bottom window. (Be surc not to use filename.mesa on 4
the command line)

bravo/j filename octalNumber

This invokes Bravo and gets filename.mesa. It also sclects the character position
corresponding to the octal number and normalizes the selection. This is useful when the
source text printed with an crror message does not supply enough context to locate the
error; each ecrror message also includes the octal number necded by this macro.

q[uit]/m

This Bravo command writes out the filc in the sclected window (say filename.mesa)
and terminates Bravo. It then specifics the following sequence of (Exccutive) commands:

delete filename.errlog
compile filename
bravo/m filename

The command line switch “/r" (run) causcs the compiler to terminate by running some other
program instcad of rcturning to the Alto Exccutive. You may specily cither a . image” or a
".run” file. If you omit the cxtension, ". image" is assumcd. Any switchces after the "r" and any
other text remaining in the command line after the command specifying this switch are copied to
the file comcm for inspection by the new program, The facility is primarily intended for use in
(program gencrated) command files.

Compiler o 12

Examples:
Compiler sourcefile Mesa/r sourcefile

Compile sourcefile; then invokc mesa.image to load and start sourcefile.bcd.
Note that "Compiler sourcefile; Mesa sourcefile"” has the same cffect but is
slower, because it rcturns to the Alto Execcutive before invoking Mesa. (There are
overhcads of scveral scconds associated with both restarting the Exccutive and
reestablishing the Mesa cnvironment,)

Compiler sourcefile Ftp.run/r Iris store sourcefile.bcd

Compile sourcefile, then storc the object file on Iris. Note that you must supply the
".run" and ".bcd" to invoke Ftp in this way.

Finc point:

You can run Bravo using the “/r" switch, but the current version (7.1) will not correctly find switches or
arguments on the command line.

Error . Mcssages

The compiler writes error and warning messages for sourcefile.mesa on
sourcefile.errlog. Each pass detects certain classes of errors. Error messages are logged in
(approximate) source order by cach pass. Within a single pass, the compiler does its best to
complete its analysis in spitc of any errors. With the cxception of "correctable” syntactic crrors,
dctection of an crror by onc pass causes all following passcs to be skipped. Thus you will
somectimes get a new sct of error messages after corrccting all those reported by a previous run of
the compiler. The compiler never writes a bindable or loadable object file if it detects any
Crrors, :

The compiler also logs warning messages. These arc advisory only and arc intended to draw your
attention to suspicious usage. They do not abort compilation or invalidate the object file.

Here is a trivial and nonscnsical program that illustrates the form of the compiler’s error
messages.

Sample: PROGRAM =
BEGIN
i: INTEGER,
i ¢ j+TRUE;
END.

i: INTEGER, .
+ Syntax Error [46]
Text deleted is: ,
Text inserted is:

j is undeclared, at Sample[52]:
i « j+TRUE;

TRUE has incorrect type, at Sample[52]:
i ¢ j+TRUE;

Compiler 13

?+TRUE has incorrect type, at Sample[b2]:
i ¢ j+TRUE;

The first message is generated by the first pass and shows how syntactic and lexical crrors are
reported. The arrow points to the first symbol that is necessarily invalid (or onc symbol before
it), and the octal number is a character indcx in the source file. Of course, the compiler cannot
know what you intended, and the "rcal” crror might have occurred quite a bit earlier. The
compiler trics to fix these crrors as best it can by local deletion and insertion of symbols. These
symbols are not written into the source file but arc reported to help you interpret subscquent
messages. [f the compiler cannot find a way to continuc parsing, or if too many of these errors
accumulate, it gives up.

The other error messages report "semantic” crrors. Errors arc located by displaying a line of
source text (the sccond line in each message) as well as by character index (the octal number) and
enclosing procedure or program name (the identifier preceding the number). The text of the
error message is intended to be reasonably self-explanatory. Sometimes it refers to an identifier
or expression. The compiler reconstructs these expressions from the parse tree; in later passes,
the reconstruction often reflects rearrangement or constant folding. As subexpressions, "?"
indicates an undeclared identifier and "..." indicates eithcr a cutoff because of depth of nesting
or an expression form the compiler cannot reconstruct from the parse tree,

Compiler Failures
The message reporting a compiler failure has the following form:
FATAL COMPILER ERROR, at id[index]:-
(source text)
Pass = n, signal = s, message = m
Such a message indicates that the compiler has noticed some internal inconsistency. If you get
such a message (or encounter other compiler problems), you should submit a change request (CR)

as described in Section 1.8. Be sure to prescrve the relevant files and to mention the octal codes
identifying the pass (n), signal (s) and message (m) in your CR.

Current Limitations

The following limits are built into the current implementation of Mesa and are enforced by the
compiler:

The number of interface items declared in a single DEFINITIONS module cannot exceed 128.

Necither the number of procedurc bodics nor the number of signal codes defined in a
singlc PROGRAM module can excced 128,

The size of the frame required by a procedure or program cannot exceed 4096 words.
The compiler allocates its internal tables dynamically and tries to adjust their rclative sizes to

accomodate the program being compiled. When it is unsuccessful, it reports failure with a
message of the form;

Compiler

Storage Overflow in Pass n

You must split your program into two or morce smaller modulcs.

14

15

Appendix B: Binder

The Mesa binder combines modules and previously bound configurations to produce a new
configuration. The Mesa Language Manual documents the syntax of a configuration description
which describes the desired configuration to the binder. The output of the binder is a binary
configuration description (BCb) which may be loaded into a running system or processed by a
later invocation of the binder. This section will discuss the operation of the binder including the
binding time options and switches. .

File Organization

In order to understand the options described below, it is ncecessary to understand something about
how configurations exist in files. The BcD file produced by the binder normally contains only
the compiled description of the configuration. It does not contain any code or symbols. For
cach module instance in the configuration, the BCD specifiecs the location of the code and symbols
by file name (and time stamp), starting page, and number of pages. Thus the code and symbols
for a configuration may be scattered over a large number of files. It is possible to put the BCD,
the code, and the symbols in the same filc (this is the way BCDs arc gencrated by the Mesa
compiler).

While debugging, the "normal” mode of operation is not to copy code or symbol segments to
another file (the dcfault; no switches), but to lecave them in the files gencrated by the compiler.
This saves disk space and requircs the least binding time.
/

For distribution, code and/or symbols can be copied into the output file by using the
corresponding switch on the source file name (not on the output file name). Alternately, they
can be copied into different code or symbols files by giving the file name and switch following
the source file name.

It is a good idea to package the symbols of a rcleased subsystem into a scparate file, so that they
will not take up disk space when they are not in use. This also makes it casicr to keep track of a
consistent set of symbols for all of the modules. Because the binder and loader decal only with
interfaces, symbol tables are not required for binding or loading. Of course, they are required
for meaningful dcbugging. (The FETCH program and the debugger’s ATtach Symbols command
can be used to gect symbols for individual modules during debugging.)

There is also an option for compressing the symbol tables as they are copied. In this mode, only
public symbols declared in the global frame (plus all procedures and signals and their parameters
and results) arc included. Private symbols and variables local to procedures are not copicd. This
option allows limited but usually adcquate debugging, and will substantially reduce the size of the
symbols file (typically by 50%).

Fine point:

Copying code into a file other than the BCD file is supported, but probably not uscful.

Binder 16

Running the Binder
The binder takes commands cither from the command line or intcractively from the keyboard.
Commands arc of the form
source[/s file/s file/s]
where [] indicates optional parts. The valid switches are
/d - enter debugging mode

/c - copy code scgments to this file
/0 - give this name to the output BcD file

/s - copy symbol scgments to this file

/x - copy compressed symbols to this file

/p - pause before procecding if therc are errors
/r - run the specifiecd program

/g - (go) begin processing the preceeding files

A switch specified with a null file name is a global switch, A switch letter may be preceeded by
"-" to negatc its cffect. The only switch with cither of these properties is the /p switch. The
binder will pause after completing all commands if any crrors were reported. Applying the /p
switch to an individual sourcc may cause a pausc carlier as well.

Normally a command to thc binder is terminated with an end-of-line. In order to specify more
than onc command using command line input, the /g switch (for "go") may be used to replace
the end-of-line. Simply add the /g switch to the last file name of each command, (This optlon
is not available when input is from the keyboard.)

The first file name is always the source configuration description. The last occurance of a /¢, /o
or /s file will prevail, and extra filenames are ignored. Decfault extensions are "config" for
source, "bed" for output, "code" for code and "symbols" for symbols. Default output is to
source.bcd. Examples:

foo
Read foo.config and write the resulting BcD on foo.bcd. This is the "normal” debugging
mode since it is the fastest and requires the least disk space.
foo/c
Read foo.config, write foo.bcd. Copy all code scgments into foo.becd. Leave all symbol
segments as they were in the input files. This is a possible "distribution" mode.
foo/cs

Recad foo.config, write foo.bcd. Copy all code and symbol scgments into foo.bcd. ThlS
is also a possible distribution mode, if dcbugging will be required.

foo/c foo/x

Read foo.config, write foo.bcd. Copy all code scgments into foo.bcd; compress all
symbol scgments into foo.symbols. By packaging all of the symbols in a single file, you
minimize the risk of getting an incorrcct version of somc symbol table.

Binder 17

foo.cd/c foo.sym/s foo.bound/o)
Read foo.cd, write foo.bound. Copy all code segments into foo.bound and all symbol
scgments into foo.sym.

foo.cd/c foo.sym/sg bar/c

Rcad foo.cd, writc foo.bcd. Copy all code scgments into foo.bed and all symbol
scgments into foo.sym. Then rcad bar.config and write bar.bcd. Copy all its code into
bar.bcd.

/-p foo/g bar/cg dum

Bind foo, bar, and dum and will not pause cven if there are crrors.

foo/q bar/cpg dum
Bind foo, bar, and dum as usual and, in addition, stop after bar if it contains errors.

Because of the large number of options available, it is doubly important to maintain file
consistency. Appropriate version checks are included in the binder, the loader, and the dcbugger.

Context Switching

The command line switch /r (run) is used to specify that the Binder should run some other
program rather than rcturning to the Alto Exccutive. Both ".image" and ".run" files may be
specified. If there is no explicit extension, ". image" is assumed. Any switches after the r and
any other text remaining in the command line after the file with the /r switch will be copied to

the file coMm.cMm for inspection by the ncew program. '

Examples:

Binder SomeConfig/g Mesa/r SomeConfig)
will bind SomeConfig and then run Mesa. image as if you had typed Mesa SomeConfig.

Binder SomeConfig/g Mesa/rd OtherConfig/-s SomeConfig

will bind SomeConfig and then run Mesa.image as if you had typcd Mesa/d
OtherConfig/-s SomeConfig.

Binder SomeConfig/cg Ftp.run/r Store SomeConfig.bcd

will bind SomeConfig copying the code and then run Ftp.run as if you had typed
Ftp.run Store SomeConfig.bcd.

Fine points:

The last specification before the file with the /r switch must have the /g switch to indicate the end of the
previous command.

You can run Bravo using the /r switch, but the current version (7.1) will not find switches (or arguments) on
the command linc.

Binder 18

Error Messages

The binder reports error and warning messages on the display and in the file MESA.TYPESCRIPT, If
possible, the binder will indicate the offending source line and configuration name with cach
crror. Some of the common crror messages are:

foo is undeclared (in baz)

The module baz is trying to import the interface (or program) foo but foo is neither
imported from a higher lever configuration nor exported by any module or configuration
at the same level.

foo does not name a module or configuration

The identificr used to name a module or configuration in a configuration description
must cxactly match (including capitalization) the name used inside that module or
configuration,

item nnn in interface foo is unbindable

(Warning) Item number nnn in the interface foo has no implementation. You can count
(from 0) the interface items in foo or use the lister’s Interface command to gct more
information.

foo referenced in different versions

(Warning) Two different versions of the named file are referenced by the modules being
bound. This will produce another error message if you attempt to match the two versions
as import and cxport.

foo cannot be 1imported as baz

foo is the interface (file name and version) which is available for import (or being
passed as a paramcter), but the importer is asking for baz. The source linc shows the
importer. ’

foo cannot be exported as baz

The source line shows an cxporter of foo who trying to assign the interface (implicitly or
explicitly) to baz. This may be a version problem (if the names are the same) or an error
in an assignment,

foo is not imported by any modules
foo is not exported by any modules

A configuration must tell the truth about what it IMPORTS and EXPORTS, i.c. everything
imported or exported by a configuration must actually be imported or cxported by a
contained module or configuration.

Errors detected, BCD not written
The binder has produced no output.

Errors detected, BCD is invalid

Binder 19

Errors were discovered after the binder had started writing the output file, The file has
been made invalid so that ncither the binder nor the loader will accept it as input.

Type any character to exit

The binder will normally pausc before rcturning to the Alto Exccutive (or running
another program) if there were any crrors detected, To turn this global pausc flag off,
usc the switch /-p with a null file name.

Fatal Binder Error

Fatal crrors are reported in a fashion similar to the compiler; the signal and message are
given in octal, and should be included in any change rcquest reporting a fatal binder
CITOor.

Current Limitations

The DIRECTORY clause in a configuration description should be used onl/y when the name of a
module or configuration differs from the name of its file. Do not make DIRECTORY entrics for
interface (DEFINITIONS) files.

The output Bcp file can be renamed; the code and symbols files cannot (since the BCD contains
the names of thesec files in its internal tables).

Copying code and symbols into the same file (other than the BcD file) is not implemented.

Multiple instantiations of nested configurations are not implemented. You can get around this
by binding the nested configuration in a scparate step.

Estimated running time: five seconds for initialization plus one-half sccond per included file
(module or configuration). Add one sccond per module to copy code and one sccond per module
to copy symbols.

20

Appendix C: System

Mesa systems are available in both standard and basic configurations. The basic configuration’s
only interface is the command line. BCDs may be loaded and started by specifying them on the
command line. The standard configuration contains thc Mesa Fxecutive which scrves as the user
interface. Scc the Mesa System Documentation for details, The standard configuration also
allows command linc loading.

Command line loading

Both the standard configuration and the basic configurations allow clients to load their BCDs by
specifying them on the command line. The general form of the command line is:

>Mesa[/d] filel[/sw] file2[/sw] . . .
The valid switches are listed below. A ’- precceding the switch inverts thc mcaning.

/d -- go to the dcbugger after loading this BCD but before startmg it. This is the only
switch applicable to the image file.

/s -- start the BCD (dcfault if non-null control module).

/1 -- load the BCD with code links. The /1 switch is also applicable to the New command of the
Mcsa Exccutive. The modules will only have code links if there is room for the links in the code and the
modules specify that they want code links.

The default extension is ".bcd”. There are no global switches. All switches only apply to the
file to which they arc attached. If BasicMesa runs out of things to load from the command line,
it returns to the Alto Executive. If Mesa runs out, the Mesa Ixecutive is given control.
Examples:

>BasicMesa WindowPackage/1-s SomeConfig/d

Start BasicMesa and load the WindowPackage with code links but don’t start it. Then
load SomeConfig and go to thc dcbugger before starting it.

>Mesa AConfig/-s StrangeConfig.foo/-s

Start Mesa and load AConfig.bcd and StrangeConfig.foo without starting cither and
then cnter the Mesa Ixecutive.

System 21

Error Mecssages
Errors generated during ltoading or interaction with the Mesa Executive are reported by displayed
messages and by uncaught signals in BasicMesa. The following crror messages are given by the
Mesa Executive: '
IFile: file
When attempting to load a BCD, file cannot be found or is an invalid BCD. If file is
not the BCD being loaded, then it is a code file for the BCD. A BCD may be invalid because it

is was invalidated by cither the Compiler or Binder due to crrors in its construction, or becausc it was
produced by a previous version of the system.

|Number

An invalid number was typed.
IString too long

A string was typed that was too long.
IFile name referenced in different versions

When loading a BCD, the interface or program name was referenced in different versions.
Loading is continued but therc may be unbound external references.

External Debugger not installed, type DEL to abort
An attempt was made to invoke the decbugger but it has not been installed.

The signals that may be gencrated By BasicMesa arc listed below. Sce BASICMESA.SIGNALS for the
corresponding signal values.

BadFile[name]

When attempting to load the BCD name, cither it cannot be found, it is an invalid BCD,
or a code file in the BCD is not available.

VersionMismatch[name]

When loading a BCD, the interface or program name was referenced in different versions.

22

Appendix D: Debugger

The common facilities available in the Mesa dcbugger include sctting breakpoints, tracing
program cxccution, displaying the runtime state, and interpreting Mesa statements. It will be
casicst to understand how to access thesc facilitics by going through a simple example using many
of the common commands. ”

Command line installing

To install the debugger from the command line of the Alto Exccutive, use the "I" switch; use the
"L" switch to load programs with code links (to save spacc).

For ecxample, typing XDebug WindEx/i installs the dcbugger with the window manager
(WINDEX.BCD); typing XDebug WindEx/i1 installs wiNDEX with code links.

Files

The debugger itself is containcd in the file XDEBUG.IMAGE; the window manager is WINDEX.BCD.
There arc several other files that arc used by the debugger and should not be deleted from your
disk. These arc the swapping files uscd by the dcbugger: SWATEE (to hold the user’s corc image)
and MESADEBUGGER (to hold the debugger’s core image), and the DEBUG.TYPESCRIPT flle uscd as a log
of your dcbugging session.

Signals and crrors
Sce the Mesa Debugger Documentation for details on the common signal and error messages you
might reccive and suggestions for recovery.

Sample program

The configuration we arc going to use as an example is taken from the Mesa Language Manual
(chapter 7). These files may be found on [IRIS]MESA>DOC.

The simple configuration Config2 consists of two modules, Lexicon and LexiconClient. After the
modules have been compiled and the configuration has been successfully bound, you are ready to
load and dcbug the program.

Fntering the debugger

Let us assume that the configuration has been loaded (but not started) and you have entered the
dcbugger for the first time (via the Debug command or the "D" switch). You get a herald that
indicates when your version of the debugger was built followed by the current date and time and
a prompt for the first command:

Dehugger 23

Alto/Mesa Debugger 4.0 of 25-May-78 16:31
6-June-78 17:27

Sectting the context

In order to get to a context from which you can set breakpoints in onc of the modules in
Config2, lct’s look to sec which configurations have been loaded by saying:

>List Configurations [confirm]
which responds with:

Config2
Mesa.

If we check the current context at this point, you can sec that the current configuration is Mesa,
>CUrrent context --
Module: NubControl, G: 172234B, L: 167230B, PSB: 27708
Configuration: Mesa,
We need to set the current configuration to be Config2,
>Set Root configuration: Config2
and find out which modules are in this configuration,
>Display Configuration Config2
Lexicon, G: 150404B
LexiconClient, G: 150420B.

Now we can sct the context to be Lexicon, so that we can sect some breakpoints,

>Set Module context: Lexicon.

Using windows

Lct us assume that you have loaded the window manager (WINDEX) with your dcbugger; this allows
you to position and change the size of the windows as well as to sct breakpoints and to sclect text
to be used as type-in. The left margin of a window is used for scrolling; usc the red mouse
button to scroll up; the yellow button to thumb; and the blue button to scroll down. The rest of
the window is a text arca; you can make character sclections by clicking the red mousc button,
word sclections with the yellow button, and display the menu with the bluc button. Sce the
Extended [Features Memo for complete details on WINDEX,

Debugger 24

Sctting breakpoints by sclections

Let’s load the source text for Lexicon into a window so we can sct breakpoints using sclections.,
This may be donce in onc of two ways: cither display the stack and ask to sce the source (this
loads the source file for the current module into the sourcefile window of the debugger),

>Display Stack
Lexicon G: 150404B >s
Source: {>--Lexicon.mesa June 6, 1978 5:20 PM

>q.

or you can create a new scratch window and type-in the name of the file followed by cscape
(esc) (this loads the source file into the window you have just created).

Now move into the window containing the sourcefile, and click a mouse button to make it the
current window. Suppose we want to set a breakpoint on the exit of the procedure NewNode,
Scroll the window until this procedure is visible, then sclect the word RETURN inside this
procedure (by using the yellow button for word sclect mode). Hold down the menu button and
choose the SetBr command. This sets a breakpoint on the exit of the procedure (similarly
selecting the word PROCEDURE scts a breakpoint on the entry to thc proccdure).

Suppose you want to sct a brecakpoint in the end of one of the conditional IF- THEN- ELSE statements
in the procedure InsertString. Sclect any character in the statement ELSE n.llink « NewNode[];.
Confirmation that the breakpoint has been set is given by the moving the sclection to ELSE
Onlllink « NewNode[]; (Note that in all cases, the closest enclosing statement is the place at
which the brecakpoint is actually set).

Sctting breakpoints by type-in

You may also sct breakpoints in the program by mecans of typing-in the command. This gives
you the added capability. of specifying a condition that must be satisficd for the breakpoint to be
taken. If, for instance, you want to sct a breakpoint on the entry to the procedure FindString, and
invoke the dcbugger only if mot is not NI, you can do this by saying:

>Break Entry Procedure: FindString, condition: root # NIL.

Inserting comments

‘Saving some comments along with the commands is a good idea so that it is casicr to remember
what happened when looking back at the typescript file. For instance you might now say,

>--This breakpoint was set to skip checking for a lexicon if we
>--know the tree is empty.
Proceeding

It is now time to procced and start the program. This is donc by cxccuting the following
command:

>Proceed [confirm]

Debugger 25

and Starting thc program.

If we try to add the lexicon "xxxxx" to the tree, we will then recach our breakpoints.

Examine and change the state

You next enter the dcbugger at onc of the breakpoints with the herald:
>Break at exit from NewNode, L: 165034B (in Lexicon, G:150404B)

to indicate where you are, At this point you might display the stack and look at some variables,
>Display Stack

NewNode, L: 165034B (in Lexiocn, G:150404B) >v
n=164333bt

>q
or look at the several levels of the stack,
>Display Stack
NewNode, L: 165034B (in Lexicon, G:150404B) >n
InsertString, L: 165044B (in Lexicon, G:150404B) >n
AddString, L: 165054B (in Lexicon, G:150404B) >n

LexiconClient, L: 171664B (in LexiconClient, G:150420B) >n
No symbols for NubControl, G: 172234B, L:172060B, PC: 314B, E

2q
or ask to see what the node n (in NewNode) looks like (by using the interpreter),

> nt
Node[11ink:NIL, rlink:NIL, string:(5,5)"xxxxx"].

Let’s say we wanted to sct both the left link and right link of n to point to itsclf and then check
the values. This may be donc by saying,

> n.11ink ¢« n ; n.rlink ¢ n 3 n ; nt
which responds with,

1643338+
Node[11ink:164333Bt, rl1ink:164333Bt, string:(5,5)"xxxxx"].

If at this point we want to sce the value of the variable ch in the module LexiconClient (a
variable in the current configuration but not in the current context), this may be donc by saying,

>Find variable: ch
which responds with the first character of the last lexicon that was typed,

'x (in LexiconClient)

Debugger 26

More breakpoint commands

The following command lists all of the breakpoints that have been set:
List Breaks [confirm]

If you decide that you are no longer intcrested in any of these breakpoints you can
Clear A11 Breaks [confirm]

which removes all breakpoints and restores the instructions.

Look at the user world

If you arc interested in secing the state of the user display, you can look at the user world by
saying

Userscreen [confirm]
When you are done, hitting the SwWAT key returns you to the debugger, ready to exccute more
commands.
Sctting tracepoints

Supposc next you want to sct a trace on the entry to the proccdure LexicalCompare so that you
can simply sce the two strings being compared and go on. You may do so by saying,

>Trace Entry Procedure: LexicalCompare.
Now we should proceed and try to add a ncw lexicon, say "yyy".

When the tracepoint is reached, you get a dump of the input paramecters of LexicalCompare along
with the herald:

Trace at entry to LexicalCompare, L: 171674B (in Lexicon, G:150404B)
s1=(3,80)"yyy"
§2=(5,5)"xxxxx" >

at which point you may continue cxccuting your program (respond with Q) or enter the debugger
command processor (respond with B).

This represents a bricf introduction to the use of most of the debugger’s commands that you will
commonly nced. Scc the Mesa Debugger Documentation for further details; the best tcachers are
cxperienced Mesa programmers and lots of practicell

27

Appendix E: Utilities

Described below are scveral utility packages that have proved uscful in building Mesa systems.,
The Lister produces human readable listings of various Mecsa file formats. The IncludeChecker
checks for object file consistency. The Statistics package generates source and object statistics.
Version lists creation dates for source and objcct files. The SignallLister produccs a mapping of
signals and signal values. :

Lister

The Lister produces listings of code, symbols, beds, cte. from object and source files. To use it,
retricve <MESA>LISTER.IMAGE. It opecrates in cither command linc or keyboard mode. Commands
look like procedure calls with constant (string, numecric, character, boolcan) arguments.
Arguments arc type checked by the command interpreter. In command line mode type to the
Alto Executive:

>Lister commandi[argl, arg2, ...] command2[argl, ...]
You actually type the square brackets, as in a Mesa procedure call.

In kcyboard mode you just type the command with arguments. Typing the esc key will extend
the command name if a unique command exists. The Lister will prompt for arguments if the
command name is terminated with cr. Typing ? in keyboard mode will produce a list of
available commands and their arguments. The current commands are:
Code["Filename"]

Given a bed file produced by the compiler, this command will produce a listing (on
Filename.c1) of the objcct code. If the source file is available on your disk, the source
for cach statement will be listed just before the object code.

Warning: This command produces a large amount of output.

OctalCode["Filename"]
Same as the Code command, except that opcodes are given in octal as well as by name,
Warning: This command produces a large amount of output.

OpcodeList["Filename"] ‘
Gencerates on Filename.list a onc page (Gacha8) listing of the Mesa opcodes.

Bcd["Filename"]
This command produces (on Filename.b1) a listing of the intcrnal tables of the binary
configuration description. Output of cither the compiler or binder is acceptable.
BcdLinks["Filename"]

Same as the Bed command, cxpect that the control links of imported and cxported itcms
~arc included.

Utilitics 28

BcdSegment["Filename",Base,Pages,Links]

The most general form of the Bcd command allowing you to specify the Jocation of the
bed by filename, starting page number, and number of pages. Specify TRUE or FALSE for
Links.

Interface["Filename"]

Given the bed file for an interface (DEFINITIONS file), this command will produce (on
Filename.i1) a list of the interface items and numbers. These numbers are the ones
reported by the Binder for unbindable items.

Symbols["Filename"]

Given a compiler output bed, this command will list the internal symbol table.

Symbol1Segment["Filename" ,Base,Pages]
A more general form allowing complete specification of the location of the symbols (e.g.
in a .symbols file).

Load["Filename"]
An ecscape hatch allowing other programs to run in the Lister cnvironment. NEWs and
STARTs the module Filename.

Debug[]
Invokes the Dcbugger.

Quit[]
Recturns to the Alto Executive.

Include Checker

The IncludeChecker is a program that checks the include relationships in beds for consistency.
[ts output is in three scctions. The first is a compilation order for thosc files checked that is
alphabetic as much as possible while satisfying the include rclationships. The sccond is a list of
include relationships, listing those files cach module includes and the timc stamps of the files.
Any inconsistancics are flagged with an asterisk. The final list is the included relationships,
listing those files which include a particular file. To use it retrieve
<MESA>UTILITIES>INCLUDECHECKER.BCD, It gets all of its parameters from the command linc and is
started by typing to the Alto Executive:

>Mesa IncludeChecker outputfile [filenamel filename2 . , .]
where

outputfile is thc name of the file the output is written on. If no cxtension is given,
".list" is assumecd.

the list of filenames specifies those beds that are to be checked. If no files are specified,
all bcds on the disk arc cxamined.

FFor cxample, the following command line will produce the output shown below on file

Utilities ’ 29

Foo.Tlist.

>Mesa IncludeChecker Foo Allocator AltoDefs FspDefs InlineDefs MopCodes
SystemDefs TableDefs

Compilation Order:
MopCodes InlineDefs AltoDefs FspDefs SystemDefs TableDefs Allocator

Allocator (12-May-78 17:19:32 #5 #20) includes
InlineDefs (11-Apr-78 18:21:55 #5 #143)
SystemDefs (11-Apr-78 18:30:25 #5 #143)
TableDefs (11-Apr-78 18:22:24 #5 #143)

AltoDefs (11-Apr-78 18:20:32 #5 #143) includes nothing

FspDefs (11-Apr-78 18:26:53 #5 #143) includes
AltoDefs (11-Apr-78 18:20:32 #5 #143)

InlineDefs (11-Apr-78 18:21:55 #5 #143) idincludes
MopCodes (11-Apr-78 18:21:02 #5 #143)

MopCodes (11-Apr-78 18:21:02 #5 #143) includes nothing

SystemDefs (11-Apr-78 18:30:25 #5 #143) 1includes
FspDefs (11-Apr-78 18:26:53 #5 #143)

TableDefs (11-Apr-78 18:22:24 #5 #143) includes
AltoDefs (11-Apr-78 18:20:32 #5 #143)

Allocator is included by nothing
AltoDefs is included by

FspDefs

TableDefs

FspDefs 1is included by
SystemDefs

InlineDefs is included by
Allocator

MopCodes 1is included by
InlineDefs

SystemDefs is included.by
Allocator

TableDefs 1is included by
Allocator

Utilitics 30

Statistics Package

This package gathers statistics about Mesa source and object files and writes them on
MESA.TYPESCRIPT. It may be invoked cither interactively of from the command line. It may be
invoked from the command line by typing thc following to the Alto Exccutive:

>Mesa Statistics filename[/switches]

Output is to the display and to MESA.TYPESCRIPT. If no filecnames arc specificd on the command
line, Statistics enters the intcractive mode. Type ? to get full documentation. The follow
switches are usecd:

/b -- Dbed statistics (default).

/¢ -- command: wuse filecname as switch.

/d -- invoke dcbugger.

/h -- print heading.

/m -- source statistics (default).

/s -- print subtotal.

/t -- print total.

/x -- "Management"” statistics.

The following command line will gencrate the output shown below:

>Mesa Statistics AlFont DisplayControl StreamIO SystemDisplay t/c
Alto/Mesa 4.0 of 26-May-78 12:31

8-Jun-78 8:58 ’

>Statistics -- 1703308

Alto/Mesa Statistics Package

Statistics as of 8-Jun-78 8:59:01

chars lines codebytes framesize ngfi nlinks codepages sympages

AlFont 6136 212 562 4 1 6 2 11
DisplayControl 6754 197 684 50 1 26 2 14
StreamIO 6404 263 . 876 6 1 7 2 10

1 8 4 20

SystemDisplay 15834 526 1778 63

TOTAL: 35128 1198 3890 123 4 47 10 55

Utilities 31

Yersion

Version is a program which displays time stamp information for files with any of the following
cxtensions: mesa, config, bed, image, symbols and code. For source files (mesa and config
cxtensions) it rcads the first page of the file and trys to find a valid date. For binary files (bcd,
image, symbols and code) it knows where to find the time stamp that Mecsa uses for version
checking. When given a file name root, Version scarches the disk for files with that root and the
above cxtensions, displaying the time stamp for ecach file found.

Version may be run ecither from the command line or interactively., To run Version from the
command line typc the following to the Alto Executive

>Mesa Version [filenamel filename2 . . .]

To run Version interactively omit the list of filenames in the above line. Version will then
prompt for input.

Sample output is shown below.

Alto/Mesa 4.0 of 26-May-78 12:31
8-Jun-78 8:35
>Version -- 1703248

Mesa
config: 30-Mar-78 16:47:00
symbols: 26-May-78 12:29:56 5#20B#
image: 26-May-78 12:31:24 5#20B#

AltoDefs
mesa: 25-Jan-78 17:49:00
bcd: 11-Apr-78 18:20:32 5#143B#

SignalLister

SignalLister is a program which will produce a signal listing for an image file, like MESA.SIGNALS.
To produce a signal listing for FOO.MAGE, type to the Alto Executive:

>Mesa SignallLister Foo

The signal listing will be produced on file Foo.siGNALS. If the symbols for a module are not
available, no signals for that module are listed. For ecxample, if FOO.MAGE was made by loading
FOO.BCD on top of MESAIMAGE, a complecte signal listing for FOO.MAGE will require that
MESA.sYMBOLS and all the symbols for Foo.BCD be on the disk. If MESA.SYMBOLS is not present,
only those modules from Foo0.BCD will have their signals listed. :

